Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Vaccine ; 2023.
Article in English | Europe PMC | ID: covidwho-2240641

ABSTRACT

Emerging in November 2021, the SARS-CoV-2 Omicron variant of concern exhibited marked immune evasion resulting in reduced vaccine effectiveness against SARS-CoV-2 infection and symptomatic disease. Most vaccine effectiveness data on Omicron are derived from the first Omicron subvariant, BA.1, which caused large waves of infection in many parts of the world within a short period of time. BA.1, however, was replaced by BA.2 within months, and later by BA.4 and BA.5 (BA.4/5). These later Omicron subvariants exhibited additional mutations in the spike protein of the virus, leading to speculation that they might result in even lower vaccine effectiveness. To address this question, the World Health Organization hosted a virtual meeting on December 6, 2022, to review available evidence for vaccine effectiveness against the major Omicron subvariants up to that date. Data were presented from South Africa, the United Kingdom, the United States, and Canada, as well as the results of a review and meta-regression of studies that evaluated the duration of the vaccine effectiveness for multiple Omicron subvariants. Despite heterogeneity of results and wide confidence intervals in some studies, the majority of studies showed vaccine effectiveness tended to be lower against BA.2 and especially against BA.4/5, compared to BA.1, with perhaps faster waning against severe disease caused by BA.4/5 after a booster dose. The interpretation of these results was discussed and both immunological factors (i.e., more immune escape with BA.4/5) and methodological issues (e.g., biases related to differences in the timing of subvariant circulation) were possible explanations for the findings. COVID-19 vaccines still provide some protection against infection and symptomatic disease from all Omicron subvariants for at least several months, with greater and more durable protection against severe disease.

2.
Vaccine ; 41(14): 2329-2338, 2023 03 31.
Article in English | MEDLINE | ID: covidwho-2229928

ABSTRACT

Emerging in November 2021, the SARS-CoV-2 Omicron variant of concern exhibited marked immune evasion resulting in reduced vaccine effectiveness against SARS-CoV-2 infection and symptomatic disease. Most vaccine effectiveness data on Omicron are derived from the first Omicron subvariant, BA.1, which caused large waves of infection in many parts of the world within a short period of time. BA.1, however, was replaced by BA.2 within months, and later by BA.4 and BA.5 (BA.4/5). These later Omicron subvariants exhibited additional mutations in the spike protein of the virus, leading to speculation that they might result in even lower vaccine effectiveness. To address this question, the World Health Organization hosted a virtual meeting on December 6, 2022, to review available evidence for vaccine effectiveness against the major Omicron subvariants up to that date. Data were presented from South Africa, the United Kingdom, the United States, and Canada, as well as the results of a review and meta-regression of studies that evaluated the duration of the vaccine effectiveness for multiple Omicron subvariants. Despite heterogeneity of results and wide confidence intervals in some studies, the majority of studies showed vaccine effectiveness tended to be lower against BA.2 and especially against BA.4/5, compared to BA.1, with perhaps faster waning against severe disease caused by BA.4/5 after a booster dose. The interpretation of these results was discussed and both immunological factors (i.e., more immune escape with BA.4/5) and methodological issues (e.g., biases related to differences in the timing of subvariant circulation) were possible explanations for the findings. COVID-19 vaccines still provide some protection against infection and symptomatic disease from all Omicron subvariants for at least several months, with greater and more durable protection against severe disease.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2/genetics , Vaccine Efficacy , World Health Organization
3.
Lancet Infect Dis ; 23(5): 556-567, 2023 05.
Article in English | MEDLINE | ID: covidwho-2184728

ABSTRACT

BACKGROUND: The global surge in the omicron (B.1.1.529) variant has resulted in many individuals with hybrid immunity (immunity developed through a combination of SARS-CoV-2 infection and vaccination). We aimed to systematically review the magnitude and duration of the protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against infection and severe disease caused by the omicron variant. METHODS: For this systematic review and meta-regression, we searched for cohort, cross-sectional, and case-control studies in MEDLINE, Embase, Web of Science, ClinicalTrials.gov, the Cochrane Central Register of Controlled Trials, the WHO COVID-19 database, and Europe PubMed Central from Jan 1, 2020, to June 1, 2022, using keywords related to SARS-CoV-2, reinfection, protective effectiveness, previous infection, presence of antibodies, and hybrid immunity. The main outcomes were the protective effectiveness against reinfection and against hospital admission or severe disease of hybrid immunity, hybrid immunity relative to previous infection alone, hybrid immunity relative to previous vaccination alone, and hybrid immunity relative to hybrid immunity with fewer vaccine doses. Risk of bias was assessed with the Risk of Bias In Non-Randomized Studies of Interventions Tool. We used log-odds random-effects meta-regression to estimate the magnitude of protection at 1-month intervals. This study was registered with PROSPERO (CRD42022318605). FINDINGS: 11 studies reporting the protective effectiveness of previous SARS-CoV-2 infection and 15 studies reporting the protective effectiveness of hybrid immunity were included. For previous infection, there were 97 estimates (27 with a moderate risk of bias and 70 with a serious risk of bias). The effectiveness of previous infection against hospital admission or severe disease was 74·6% (95% CI 63·1-83·5) at 12 months. The effectiveness of previous infection against reinfection waned to 24·7% (95% CI 16·4-35·5) at 12 months. For hybrid immunity, there were 153 estimates (78 with a moderate risk of bias and 75 with a serious risk of bias). The effectiveness of hybrid immunity against hospital admission or severe disease was 97·4% (95% CI 91·4-99·2) at 12 months with primary series vaccination and 95·3% (81·9-98·9) at 6 months with the first booster vaccination after the most recent infection or vaccination. Against reinfection, the effectiveness of hybrid immunity following primary series vaccination waned to 41·8% (95% CI 31·5-52·8) at 12 months, while the effectiveness of hybrid immunity following first booster vaccination waned to 46·5% (36·0-57·3) at 6 months. INTERPRETATION: All estimates of protection waned within months against reinfection but remained high and sustained for hospital admission or severe disease. Individuals with hybrid immunity had the highest magnitude and durability of protection, and as a result might be able to extend the period before booster vaccinations are needed compared to individuals who have never been infected. FUNDING: WHO COVID-19 Solidarity Response Fund and the Coalition for Epidemic Preparedness Innovations.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Cross-Sectional Studies , Reinfection/prevention & control , Adaptive Immunity
4.
Vaccine ; 40(32): 4361-4370, 2022 07 30.
Article in English | MEDLINE | ID: covidwho-1977884

ABSTRACT

Respiratory syncytial virus (RSV) is the leading viral cause of acute lower respiratory tract infection (ALRI), including bronchiolitis and pneumonia, in infants and children worldwide. Protection against RSV is primarily antibody mediated and passively acquired RSV neutralizing antibody can protect infants from RSV ALRI. Maternal immunization is an attractive strategy for the prevention of RSV in early infancy when immune responses to active immunization may be suboptimal and most severe RSV disease and death occur. However, several biologic factors have been shown to potentially attenuate or interfere with the transfer of protective naturally acquired antibodies from mother to fetus and could therefore also reduce vaccine effectiveness through impairment of transfer of vaccine-induced antibodies. Many of these factors are prevalent in low- and middle-income countries (LMIC) which experience the greatest burden of RSV-associated mortality; more data are needed to understand these mechanisms in the context of RSV maternal immunization. This review will focus on what is currently known about biologic conditions that may impair RSV antibody transfer, including preterm delivery, low birthweight, maternal HIV infection, placental malaria, and hypergammaglobulinemia (high levels of maternal total IgG). Key data gaps and priority areas for research are highlighted and include improved understanding of the epidemiology of hypergammaglobulinemia and the mechanisms by which it may impair antibody transfer. Key considerations for ensuring optimal vaccine effectiveness in LMICs are also discussed.


Subject(s)
HIV Infections , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Antibodies, Viral , Biological Factors , Child , Developing Countries , Female , Humans , Hypergammaglobulinemia , Immunization , Infant , Infant, Newborn , Placenta , Policy , Pregnancy , Research , Respiratory Syncytial Virus Infections/prevention & control , Vaccination
6.
Vaccines (Basel) ; 10(6)2022 May 26.
Article in English | MEDLINE | ID: covidwho-1869857

ABSTRACT

Assessing COVID-19 vaccine effectiveness against emerging SARS-CoV-2 variants is crucial for determining future vaccination strategies and other public health strategies. When clinical effectiveness data are unavailable, a common method of assessing vaccine performance is to utilize neutralization assays using post-vaccination sera. Neutralization studies are typically performed across a wide array of settings, populations and vaccination strategies, and using different methodologies. For any comparison and meta-analysis to be meaningful, the design and methodology of the studies used must at minimum address aspects that confer a certain degree of reliability and comparability. We identified and characterized three important categories in which studies differ (cohort details, assay details and data reporting details) and that can affect the overall reliability and/or usefulness of neutralization assay results. We define reliability as a measure of methodological accuracy, proper study setting concerning subjects, samples and viruses, and reporting quality. Each category comprises a set of several relevant key parameters. To each parameter, we assigned a possible impact (ranging from low to high) on overall study reliability depending on its potential to influence the results. We then developed a reliability assessment tool that assesses the aggregate reliability of a study across all parameters. The reliability assessment tool provides explicit selection criteria for inclusion of comparable studies in meta-analyses of neutralization activity of SARS-CoV-2 variants in post-vaccination sera and can also both guide the design of future neutralization studies and serve as a checklist for including important details on key parameters in publications.

7.
Lancet ; 399(10340): 2047-2064, 2022 05 28.
Article in English | MEDLINE | ID: covidwho-1864651

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is the most common cause of acute lower respiratory infection in young children. We previously estimated that in 2015, 33·1 million episodes of RSV-associated acute lower respiratory infection occurred in children aged 0-60 months, resulting in a total of 118 200 deaths worldwide. Since then, several community surveillance studies have been done to obtain a more precise estimation of RSV associated community deaths. We aimed to update RSV-associated acute lower respiratory infection morbidity and mortality at global, regional, and national levels in children aged 0-60 months for 2019, with focus on overall mortality and narrower infant age groups that are targeted by RSV prophylactics in development. METHODS: In this systematic analysis, we expanded our global RSV disease burden dataset by obtaining new data from an updated search for papers published between Jan 1, 2017, and Dec 31, 2020, from MEDLINE, Embase, Global Health, CINAHL, Web of Science, LILACS, OpenGrey, CNKI, Wanfang, and ChongqingVIP. We also included unpublished data from RSV GEN collaborators. Eligible studies reported data for children aged 0-60 months with RSV as primary infection with acute lower respiratory infection in community settings, or acute lower respiratory infection necessitating hospital admission; reported data for at least 12 consecutive months, except for in-hospital case fatality ratio (CFR) or for where RSV seasonality is well-defined; and reported incidence rate, hospital admission rate, RSV positive proportion in acute lower respiratory infection hospital admission, or in-hospital CFR. Studies were excluded if case definition was not clearly defined or not consistently applied, RSV infection was not laboratory confirmed or based on serology alone, or if the report included fewer than 50 cases of acute lower respiratory infection. We applied a generalised linear mixed-effects model (GLMM) to estimate RSV-associated acute lower respiratory infection incidence, hospital admission, and in-hospital mortality both globally and regionally (by country development status and by World Bank Income Classification) in 2019. We estimated country-level RSV-associated acute lower respiratory infection incidence through a risk-factor based model. We developed new models (through GLMM) that incorporated the latest RSV community mortality data for estimating overall RSV mortality. This review was registered in PROSPERO (CRD42021252400). FINDINGS: In addition to 317 studies included in our previous review, we identified and included 113 new eligible studies and unpublished data from 51 studies, for a total of 481 studies. We estimated that globally in 2019, there were 33·0 million RSV-associated acute lower respiratory infection episodes (uncertainty range [UR] 25·4-44·6 million), 3·6 million RSV-associated acute lower respiratory infection hospital admissions (2·9-4·6 million), 26 300 RSV-associated acute lower respiratory infection in-hospital deaths (15 100-49 100), and 101 400 RSV-attributable overall deaths (84 500-125 200) in children aged 0-60 months. In infants aged 0-6 months, we estimated that there were 6·6 million RSV-associated acute lower respiratory infection episodes (4·6-9·7 million), 1·4 million RSV-associated acute lower respiratory infection hospital admissions (1·0-2·0 million), 13 300 RSV-associated acute lower respiratory infection in-hospital deaths (6800-28 100), and 45 700 RSV-attributable overall deaths (38 400-55 900). 2·0% of deaths in children aged 0-60 months (UR 1·6-2·4) and 3·6% of deaths in children aged 28 days to 6 months (3·0-4·4) were attributable to RSV. More than 95% of RSV-associated acute lower respiratory infection episodes and more than 97% of RSV-attributable deaths across all age bands were in low-income and middle-income countries (LMICs). INTERPRETATION: RSV contributes substantially to morbidity and mortality burden globally in children aged 0-60 months, especially during the first 6 months of life and in LMICs. We highlight the striking overall mortality burden of RSV disease worldwide, with one in every 50 deaths in children aged 0-60 months and one in every 28 deaths in children aged 28 days to 6 months attributable to RSV. For every RSV-associated acute lower respiratory infection in-hospital death, we estimate approximately three more deaths attributable to RSV in the community. RSV passive immunisation programmes targeting protection during the first 6 months of life could have a substantial effect on reducing RSV disease burden, although more data are needed to understand the implications of the potential age-shifts in peak RSV burden to older age when these are implemented. FUNDING: EU Innovative Medicines Initiative Respiratory Syncytial Virus Consortium in Europe (RESCEU).


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Child , Child, Preschool , Cost of Illness , Global Health , Hospital Mortality , Hospitalization , Humans , Infant , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Tract Infections/epidemiology
8.
Open Forum Infect Dis ; 9(6): ofac138, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1860896

ABSTRACT

Billions of doses of coronavirus disease 2019 (COVID-19) vaccines have been administered globally, dramatically reducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) incidence and severity in some settings. Many studies suggest vaccines provide a high degree of protection against infection and disease, but precise estimates vary and studies differ in design, outcomes measured, dosing regime, location, and circulating virus strains. In this study, we conduct a systematic review of COVID-19 vaccines through February 2022. We included efficacy data from Phase 3 clinical trials for 15 vaccines undergoing World Health Organization Emergency Use Listing evaluation and real-world effectiveness for 8 vaccines with observational studies meeting inclusion criteria. Vaccine metrics collected include protection against asymptomatic infection, any infection, symptomatic COVID-19, and severe outcomes including hospitalization and death, for partial or complete vaccination, and against variants of concern Alpha, Beta, Gamma, Delta, and Omicron. We additionally review the epidemiological principles behind the design and interpretation of vaccine efficacy and effectiveness studies, including important sources of heterogeneity.

9.
Open forum infectious diseases ; 2022.
Article in English | EuropePMC | ID: covidwho-1824009

ABSTRACT

Billions of doses of COVID-19 vaccines have been administered globally, dramatically reducing SARS-CoV-2 incidence and severity in some settings. Many studies suggest vaccines provide a high degree of protection against infection and disease, but precise estimates vary and studies differ in design, outcomes measured, dosing regime, location, and circulating virus strains. Here we conduct a systematic review of COVID-19 vaccines through February 2022. We included efficacy data from Phase 3 clinical trials for 15 vaccines undergoing WHO Emergency Use Listing evaluation and real-world effectiveness for 8 vaccines with observational studies meeting inclusion criteria. Vaccine metrics collected include protection against asymptomatic infection, any infection, symptomatic COVID-19, and severe outcomes including hospitalization and death, for partial or complete vaccination, and against variants of concern Alpha, Beta, Gamma, Delta, and Omicron. We additionally review the epidemiological principles behind the design and interpretation of vaccine efficacy and effectiveness studies, including important sources of heterogeneity.

10.
Vaccine ; 40(26): 3516-3527, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1815247

ABSTRACT

Vaccine effectiveness is lower and wanes faster against infection and symptomatic disease caused by the omicron variant of SARS-CoV-2 than was observed with previous variants. Vaccine effectiveness against severe omicron disease, on average, is higher, but has shown variability, including rapid apparent waning, in some studies. Assessing vaccine effectiveness against omicron severe disease using hospital admission as a measure of severe disease has become more challenging because of omicron's attenuated intrinsic severity and its high prevalence of infection. Many hospital admissions likely occur among people with incidental omicron infection or among those with infection-induced exacerbation of chronic medical conditions. To address this challenge, the World Health Organization held a virtual meeting on March 15, 2022, to review evidence from several studies that assessed Covid-19 vaccine effectiveness against severe omicron disease using several outcome definitions. Data was shown from studies in South Africa, the United States, the United Kingdom and Qatar. Several approaches were proposed that better characterize vaccine protection against severe Covid-19 disease caused by the omicron variant than using hospitalization of omicron-infected persons to define severe disease. Using more specific definitions for severe respiratory Covid-19 disease, such as indicators of respiratory distress (e.g. oxygen requirement, mechanical ventilation, and ICU admission), showed higher vaccine effectiveness than against hospital admission. Second, vaccine effectiveness against progression from omicron infection to hospitalization, or severe disease, also showed higher vaccine protection. These approaches might better characterize vaccine performance against severe Covid-19 disease caused by omicron, as well as future variants that evade humoral immunity, than using hospitalization with omicron infection as an indicator of severe disease.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , Humans , United States , Vaccine Efficacy , World Health Organization
11.
Lancet ; 399(10328): 924-944, 2022 03 05.
Article in English | MEDLINE | ID: covidwho-1768606

ABSTRACT

BACKGROUND: Knowing whether COVID-19 vaccine effectiveness wanes is crucial for informing vaccine policy, such as the need for and timing of booster doses. We aimed to systematically review the evidence for the duration of protection of COVID-19 vaccines against various clinical outcomes, and to assess changes in the rates of breakthrough infection caused by the delta variant with increasing time since vaccination. METHODS: This study was designed as a systematic review and meta-regression. We did a systematic review of preprint and peer-reviewed published article databases from June 17, 2021, to Dec 2, 2021. Randomised controlled trials of COVID-19 vaccine efficacy and observational studies of COVID-19 vaccine effectiveness were eligible. Studies with vaccine efficacy or effectiveness estimates at discrete time intervals of people who had received full vaccination and that met predefined screening criteria underwent full-text review. We used random-effects meta-regression to estimate the average change in vaccine efficacy or effectiveness 1-6 months after full vaccination. FINDINGS: Of 13 744 studies screened, 310 underwent full-text review, and 18 studies were included (all studies were carried out before the omicron variant began to circulate widely). Risk of bias, established using the risk of bias 2 tool for randomised controlled trials or the risk of bias in non-randomised studies of interventions tool was low for three studies, moderate for eight studies, and serious for seven studies. We included 78 vaccine-specific vaccine efficacy or effectiveness evaluations (Pfizer-BioNTech-Comirnaty, n=38; Moderna-mRNA-1273, n=23; Janssen-Ad26.COV2.S, n=9; and AstraZeneca-Vaxzevria, n=8). On average, vaccine efficacy or effectiveness against SARS-CoV-2 infection decreased from 1 month to 6 months after full vaccination by 21·0 percentage points (95% CI 13·9-29·8) among people of all ages and 20·7 percentage points (10·2-36·6) among older people (as defined by each study, who were at least 50 years old). For symptomatic COVID-19 disease, vaccine efficacy or effectiveness decreased by 24·9 percentage points (95% CI 13·4-41·6) in people of all ages and 32·0 percentage points (11·0-69·0) in older people. For severe COVID-19 disease, vaccine efficacy or effectiveness decreased by 10·0 percentage points (95% CI 6·1-15·4) in people of all ages and 9·5 percentage points (5·7-14·6) in older people. Most (81%) vaccine efficacy or effectiveness estimates against severe disease remained greater than 70% over time. INTERPRETATION: COVID-19 vaccine efficacy or effectiveness against severe disease remained high, although it did decrease somewhat by 6 months after full vaccination. By contrast, vaccine efficacy or effectiveness against infection and symptomatic disease decreased approximately 20-30 percentage points by 6 months. The decrease in vaccine efficacy or effectiveness is likely caused by, at least in part, waning immunity, although an effect of bias cannot be ruled out. Evaluating vaccine efficacy or effectiveness beyond 6 months will be crucial for updating COVID-19 vaccine policy. FUNDING: Coalition for Epidemic Preparedness Innovations.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Immunization Schedule , Immunization, Secondary , Ad26COVS1/therapeutic use , BNT162 Vaccine/therapeutic use , Humans , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Time Factors
12.
J Infect Dis ; 225(6): 957-964, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1735580

ABSTRACT

Nonpharmaceutical interventions (NPIs) were widely introduced to combat the coronavirus disease 2019 (COVID-19) pandemic. These interventions also likely led to substantially reduced activity of respiratory syncytial virus (RSV). From late 2020, some countries observed out-of-season RSV epidemics. Here, we analyzed the role of NPIs, population mobility, climate, and severe acute respiratory syndrome coronavirus 2 circulation in RSV rebound through a time-to-event analysis across 18 countries. Full (re)opening of schools was associated with an increased risk for RSV rebound (hazard ratio [HR], 23.29 [95% confidence interval {CI}, 1.09-495.84]); every 5°C increase in temperature was associated with a decreased risk (HR, 0.63 [95% CI, .40-.99]). There was an increasing trend in the risk for RSV rebound over time, highlighting the role of increased population susceptibility. No other factors were found to be statistically significant. Further analysis suggests that increasing population susceptibility and full (re)opening of schools could both override the countereffect of high temperatures, which explains the out-of-season RSV epidemics during the COVID-19 pandemic.


Subject(s)
COVID-19/epidemiology , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus, Human , Climate , Humans , Pandemics , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus, Human/pathogenicity , Seasons , Temperature
13.
Vaccine ; 39(30): 4013-4024, 2021 07 05.
Article in English | MEDLINE | ID: covidwho-1253726

ABSTRACT

Phase 3 randomized-controlled trials have provided promising results of COVID-19 vaccine efficacy, ranging from 50 to 95% against symptomatic disease as the primary endpoints, resulting in emergency use authorization/listing for several vaccines. However, given the short duration of follow-up during the clinical trials, strict eligibility criteria, emerging variants of concern, and the changing epidemiology of the pandemic, many questions still remain unanswered regarding vaccine performance. Post-introduction vaccine effectiveness evaluations can help us to understand the vaccine's effect on reducing infection and disease when used in real-world conditions. They can also address important questions that were either not studied or were incompletely studied in the trials and that will inform evolving vaccine policy, including assessment of the duration of effectiveness; effectiveness in key subpopulations, such as the very old or immunocompromised; against severe disease and death due to COVID-19; against emerging SARS-CoV-2 variants of concern; and with different vaccination schedules, such as number of doses and varying dosing intervals. WHO convened an expert panel to develop interim best practice guidance for COVID-19 vaccine effectiveness evaluations. We present a summary of the interim guidance, including discussion of different study designs, priority outcomes to evaluate, potential biases, existing surveillance platforms that can be used, and recommendations for reporting results.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Humans , SARS-CoV-2 , World Health Organization
14.
Pediatr Infect Dis J ; 40(6): 503-512, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1197052

ABSTRACT

BACKGROUND: Severity of viral respiratory illnesses can be increased with bacterial coinfection and can vary by sex, but influence of coinfection and sex on human endemic coronavirus (CoV) species, which generally cause mild to moderate respiratory illness, is unknown. We evaluated CoV and pneumococcal co-detection by sex in childhood pneumonia. METHODS: In the 2011-2014 Pneumonia Etiology Research for Child Health study, nasopharyngeal and oropharyngeal (NP/OP) swabs and other samples were collected from 3981 children <5 years hospitalized with severe or very severe pneumonia in 7 countries. Severity by NP/OP detection status of CoV (NL63, 229E, OC43 or HKU1) and high-density (≥6.9 log10 copies/mL) pneumococcus (HDSpn) by real-time polymerase chain reaction was assessed by sex using logistic regression adjusted for age and site. RESULTS: There were 43 (1.1%) CoV+/HDSpn+, 247 CoV+/HDSpn-, 449 CoV-/HDSpn+ and 3149 CoV-/HDSpn- cases with no significant difference in co-detection frequency by sex (range 51.2%-64.0% male, P = 0.06). More CoV+/HDSpn+ pneumonia was very severe compared with other groups for both males (13/22, 59.1% versus range 29.1%-34.7%, P = 0.04) and females (10/21, 47.6% versus 32.5%-43.5%, P = 0.009), but only male CoV+/HDSpn+ required supplemental oxygen more frequently (45.0% versus 20.6%-28.6%, P < 0.001) and had higher mortality (35.0% versus 5.3%-7.1%, P = 0.004) than other groups. For females with CoV+/HDSpn+, supplemental oxygen was 25.0% versus 24.8%-33.3% (P = 0.58) and mortality was 10.0% versus 9.2%-12.9% (P = 0.69). CONCLUSIONS: Co-detection of endemic CoV and HDSpn was rare in children hospitalized with pneumonia, but associated with higher severity and mortality in males. Findings may warrant investigation of differences in severity by sex with co-detection of HDSpn and SARS-CoV-2.


Subject(s)
Coinfection/epidemiology , Coronavirus Infections/diagnosis , Pneumococcal Infections/diagnosis , Respiratory Tract Infections/diagnosis , Animals , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Child, Preschool , Coinfection/diagnosis , Coinfection/virology , Coronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Female , HIV Infections/epidemiology , HIV Infections/virology , Humans , Infant , Infant, Newborn , Logistic Models , Male , Nasopharynx/virology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/virology , Pneumonia/diagnosis , Pneumonia/virology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , SARS-CoV-2/isolation & purification , Streptococcus pneumoniae
15.
Pathogens ; 9(10)2020 Oct 13.
Article in English | MEDLINE | ID: covidwho-905380

ABSTRACT

The magnitude of future waves of Covid19 in a population will depend, in part, on the percentage of that population already infected, recovered, and presumably immune. Sero-epidemiological surveys can define the prevalence of SARS-CoV-2 antibodies in various populations. However, sero-surveys are resource-intensive and methodologically challenging, limiting widespread use. We propose a relatively simple method for calculating the percentage of a population infected, which depends on the number of reported Covid19 deaths, a figure usually more reliable and less dependent on variable testing practices than the total number of reported Covid19 cases, and the infection fatality rate, a figure that is relatively stable in similar populations. The method can be applied in different sized areas, such as states, districts, or cities. Such an approach can provide useful, real-time estimates of probable population immunity in settings unable to undertake multiple sero-surveys. This method is applicable to low- and lower-middle-income country (LMIC) settings where sero-survey data will likely be limited; however, better estimates of infection fatality rates and Covid19 death counts in LMICs are needed to improve the method's accuracy. Information on the percentage of a population infected will help public health authorities in planning for future waves of Covid19, including where to most effectively deploy vaccines.

SELECTION OF CITATIONS
SEARCH DETAIL